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Abstract. Two-dimensional (2D) projections underlie the technique of high resolution electron
microscopy. Projections of amorphous structures are generally considered uninterpretable due
to structural disorder. We have derived the relationships between the distribution functions of
an amorphous three-dimensional (3D) structure and those of the corresponding 2D projection.
We have confirmed the relationships using calculations on models of amorphous structures with
thickness in the range from 10.6 to 43.3 Å. For example the pair and triplet distribution functions
of the 2D projections show peaks corresponding to nearest neighbour distances and bond angles
(respectively). The degree of order in the 2D projection decreases as thickness increases. Similar
results are expected for higher order correlation functions. Thus it has been demonstrated that 2D
projections of amorphous 3D structures contain a great deal of valuable structural information.

1. Introduction

Two-dimensional (2D) projections of three-dimensional (3D) structures are fundamental to
the phenomenon of electron microscopy. In particular, the standard high resolution electron
microscopy (HREM) technique is capable of producing atomic resolution structural images
of ultra-thin samples, with thicknesst < 200 Å [1]. In the weak phase object approximation,
the image intensity in HREM images is proportional to the projection of the atomic potential
convoluted with the Fourier transform of the lens contrast transfer function. Thus the structural
information underlying such an image is the 2D projection of a 3D structure. Although there
are well established methods for the interpretation of standard HREM images of crystals [1],
their interpretation in the case of amorphous materials has been problematic, because the
resolution is limited to>1 Å by lens aberrations.

However, there have recently been a number of technical breakthroughs in the field of
electron microscopy, which raise the future possibility of obtaining sub-Å resolution images
of the projected atomic potential. The image phase problem can be solved by holography
(see e.g. [2], [3]) or through-focal series reconstruction [4] and thus lead to the deconvolution
of lens aberrations. Dark- field imaging in the scanning transmission electron microscope
can lead to improvements in resolution by nearly a factor of two [5]. Work is in progress to
decrease inherent aberrations in electron lenses by employing multi-pole correctors [6]. Other
methods may surpass the resolution of the lens, irrespective of aberrations or partial coherence
via ptychography [7] or Wigner distribution deconvolution [8]. Hence, it may be timely to
consider the usefulness of information about 2D projections of 3D amorphous materials.

† Present address: School of Physical Sciences, University of Kent, Canterbury CT2 7NR, UK.
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Interpretation of the projection of an amorphous structure is problematic because
amorphous solids contain overlapping, disordered layers of atoms [9, 10]. This characteristic
would remain even if resolution were to be improved to the point where images are ‘perfect’.
Previously, workers have considered special cases, such as when the sample contains only a few
layers of atoms [11] (although such samples cannot feasibly be prepared [12]), or when there
is medium range order within regions of the sample, such as crystallites [13] or quasi-Bragg
planes [14].

In this paper, we consider the general case of thin amorphous (3D) structures and
identify structural information present in their 2D projections [15]. Our approach is to use
distribution functions which describe the degree of order in a structure. We use a particular
set of distribution functions which have quite general definitions [16]. This set includes the
pair distribution function (PDF), which is the most commonly used function for describing
amorphous structures, because it can be measured in a diffraction experiment [16]. Also
included is the triplet distribution function (TDF) which has been shown to influence the
structural signal in extended x-ray absorption fine structure experiments [17]. Note, however,
that these are not the only existing functions for describing the degree of order in disordered
structures (e.g. bond orientational order functions [18]).

2. Theory

2.1. Distribution functions for 3D structures

The problem of describing order in disordered structures has been approached by using
distribution functions. We begin by reviewing a set of distribution functions for describing
3D structures [16]. A 3D structure ofN particles with positionsR` is described by the single
particle density function,

ρ(r) =
∑
`

δ(r −R`)

(there are no assumptions about particle positions). This has the property∫
ρ(r) dr = N.

The average of this function over arbitrary origins is the atomic density,

ρ0 = 1

V

∫
ρ(r + r′) dr′ = 1

V

∫
ρ(r′′) dr′′ = N/V.

The correlations between pairs of atoms are described by the two particle density function,

ρ2(r1, r2) =
∑
`

δ(r1−R`)

(∑
m

δ(r2 −Rm)− δ(r1− r2)

)
which excludes the case ofr1 = r2. This function has the properties∫

ρ2(r1, r2) dr2 = (N − 1)
∑
`

δ(r1−R`) = (N − 1)ρ(r1)

and

ρ2(r1, r2) =
∑
`

∑
m

δ(r1−R`)δ(r2 −Rm)−
∑
`

δ(r1−R`)δ(r1− r2)

=
∑
m

∑
`

δ(r2 −Rm)δ(r1−R`)−
∑
m

δ(r2 −Rm)δ(r1− r2) = ρ2(r2, r1).
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The average of this function over arbitrary origins,

ρ2(r12) = 1

V

∫
ρ2(r1 + r′, r2 + r′) dr = 1

V

∫
ρ2(r′′, r12 + r′′) dr′′

= 1

V

∫ ∑
`

δ(r′′ −R`)

(∑
m

δ(r12 + r′′ −Rm)− δ(r12)

)
dr′′

= 1

V

∑
`

(∑
m

δ(r12− (Rm −R`))− δ(r12)

)
(1)

depends only on a single vectorr12 = r2 − r1 which represents the possible separations of
pairs of atoms. This function is related to the autocorrelation function [16],∫
ρ(r′)ρ(r12 + r′) dr′ =

∫ ∑
`

δ(r′ −R`)
∑
m

δ(r12 + r′ −Rm) dr′

=
∫ ∑

`

δ(r′ −R`)

(∑
m

δ(r12 + r′ −Rm)− δ(r12)

)
dr′

+
∫ ∑

`

δ(r′ −R`)δ(r12) dr′ = Vρ2(r12) +Nδ(r12)

which includes the case ofr1 = r2. For comparison of structures with different densities, it is
useful to use the pair distribution function (PDF),

g(r12) = ρ2(r12)/ρ
2
0. (2)

This function gives the frequencies of different interatomic distances relative to those expected
for a totally random structure, i.e. with a random set of positionsRi , which would have
g(r12) = 1. For isotropic structures it is useful to consider the radial average ofg(r12),

g(r12) = 1

4πr2
12

∫ ∫
g(r12)r

2
12 sin(θ12) dϕ12 dθ12 (3)

which depends only onr12 = |r12|.
It is possible to describe higher order correlations. Here we will specifically consider

correlations between triplets of atoms. These are described by the three particle density
function,

ρ3(r1, r2, r3) =
∑
`

δ(r1−R`)

(∑
m

δ(r2 −Rm)− δ(r2 − r1)

)
×
(∑

n

δ(r3−Rn)− δ(r3− r1)− δ(r3− r2)

)
which excludes the cases ofr1 = r2, r1 = r3, r2 = r3 or r1 = r2 = r3. This function has
the properties∫
ρ3(r1, r2, r3) dr3 = (N − 2)

∑
`

δ(r1−R`)

(∑
m

δ(r2 −Rm)− δ(r2 − r1)

)
= (N − 2)ρ2(r1, r2)

ρ3(r1, r2, r3) =
∑
`

(∑
m

δ(r1−R`)δ(r2 −Rm)− δ(r1−R`)δ(r2 − r1)

)
×
(∑

n

δ(r3−Rn)− δ(r3− r1)− δ(r3− r2)

)
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=
∑
m

(∑
`

δ(r2 −Rm)δ(r1−R`)− δ(r2 −Rm)δ(r2 − r1)

)
×
(∑

n

δ(r3−Rn)− δ(r3− r2)− δ(r3− r1)

)
= ρ3(r2, r1, r3)

and

ρ3(r1, r2, r3) =
∑
`

δ(r1−R`)

(∑
m

δ(r2 −Rm)
∑
n

δ(r3−Rn)

−
∑
m

δ(r2 −Rm)δ(r3− r1)−
∑
m

δ(r2 −Rm)δ(r3− r2)

−δ(r2 − r1)
∑
n

δ(r3−Rn) + δ(r2 − r1)δ(r3− r1) + δ(r2 − r1)δ(r3− r2)

)
=
∑
`

δ(r1−R`)

(∑
n

(δ(r3−Rn)
∑
m

(r2 −Rm)

−δ(r3− r1)
∑
m

δ(r2 −Rm)−
∑
n

δ(r3−Rn)δ(r2 − r3)

−
∑
n

δ(r3−Rn)δ(r2 − r1) + δ(r3− r1)δ(r2 − r1)

+δ(r3− r1)δ(r2 − r3)

)
= ρ3(r1, r3, r2).

The average of this function for arbitrary origins,

ρ3(r12, r13) = 1

V

∫
ρ3(r1 + r′, r2 + r′, r3 + r′) dr′ = 1

V

∫
ρ3(r′′, r12 + r′′, r13 + r′′) dr′′

= 1

V

∫ ∑
`

δ(r′′ −R`)

(∑
m

δ(r12 + r′′ −Rm)− δ(r12)

)
×
(∑

n

δ(r13 + r′′ −Rn)− δ(r13)− δ(r13− r12)

)
dr′′

= 1

V

∑
`

(∑
m

δ(r12− (Rm −R`))− δ(r12)

)
×
(∑

n

δ(r13− (Rn −R`)− δ(r13)− δ(r13− r12)

)
(4)

depends only onr12 = r2 − r1 andr13 = r3 − r1 (i.e. six dimensions) which describe the
possible separations of triplets of atoms. This function is related to the triple autocorrelation
function [19],∫
ρ(r′)ρ(r12 + r′)ρ(r13 + r′) dr′

=
∫ ∑

`

δ(r′ −R`)
∑
m

δ(r12 + r′ −Rm)
∑
n

δ(r13 + r′ −Rn) dr′

=
∫ ∑

`

δ(r′ −R`)

(∑
m

δ(r12 + r′ −Rm)− δ(r12)

)
×
(∑

n

δ(r13 + r′ −Rn)− δ(r13)− δ(r13− r12)

)
dr′
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+
∫ ∑

`

δ(r′ −R`)
∑
m

δ(r12 + r′ −Rm)(δ(r13) + δ(r13− r12)) dr′

+
∫ (∑

`

δ(r′ −R`)δ(r12)
∑
n

δ(r13 + r′ −Rn)

−
∑
`

δ(r′ −R`)δ(r12)(δ(r13) + δ(r13− r12))

)
dr′

= Vρ3(r12, r13) + V (ρ2(r12)δ(r13) + ρ2(r12)δ(r13− r12)

+ρ2(r13)δ(r12)) +Nδ(r12)δ(r13)

which includes the cases ofr1 = r2, r1 = r3, r2 = r3 andr1 = r2 = r3. For comparison of
structures with different densities, it is useful to use the triplet distribution function (TDF),

g3(r12, r13) = ρ3(r12, r13)/ρ
3
0. (5)

This function gives the frequencies of different arrangements of triplets of atoms relative to
those expected for a totally random structure, i.e. with a random set of positionsRi , which
would haveg3(r12, r23) = 1. For isotropic structures it is useful to consider the orientational
average ofg3(r12, r23),

g3(r12, r13, θ23) = 1

4πr2
122πr13

∫ ∫ ∫
g3(r12, r13)r

2
12 sin(θ12) dϕ12 dθ12r13 sin(θ23) dϕ23

(6)

which depends only onr12 = |r12| andr13 = |r13|, andθ23, the angle betweenr12 andr13.

2.2. Distribution functions for 2D structures

It is possible to define analogous functions for 2D structures, and we denote these functions
using the subscript ‘2D’. The notatioñr identifies 2D vectors (x, y). There are changes in the
dependent variables and limits of integration, and in the normalization constants for isotropic
averaging, relative to those for 3D structures. For an isotropic 2D structure, the radial averages
of the PDF and TDF (respectively) are

g2D(r̃12) = 1

2πr̃12

∫
g2D(r̃12)r̃12 dφ12 (7)

and

g32D(r̃12, r̃13, φ23) = 1

4πr̃12

∫
g32D(r̃12, r̃13)r̃12 dφ12. (8)

The latter normalization includes a factor of 2 becauseφ23, the angle betweeñr12 andr̃13, is
restricted to lie in the range 0 toπ .

2.3. Pair distribution functions for 2D projections

We now consider the special case of a 2D structure which is the 2D projection of a 3D structure.
The appropriate functions are the same as those for a 2D structure, but we denote these functions
using the subscriptP for the special case of a 2D projection. For simplicity we assume a
structure with boundaries parallel to the (x, y) plane and thicknesst in the z direction, i.e.
06 z 6 t . Here we are concerned with the relationship of these functions to those describing
the 3D structure from which the 2D projection is generated. The relationship between the one
particle density functions is

ρP (r̃) =
∑
`

δ(r̃ − (X, Y )`) =
∫ t

0

∑
`

δ(r −R`) dz =
∫ t

0
ρ(r) dz.
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The relationship between the averages of these functions for different origins is

ρ0P = 1

A

∫
ρ(r̃ + r̃′) dr̃′ = t

V

∫ ∫ t

0
ρ(r + r̃′) dz dr̃′ = t

V

∫ ∫ t

0
ρ(r′′) dz′′ dr̃′′ = tρ0

wherez′′ = z andr̃′′ = r̃1 + r̃′. The relationships between the two particle density functions
are

ρ2P (r̃1, r̃2) =
∑
`

δ(r̃1− (X, Y )`)
(∑

m

δ(r̃2 − (X, Y )m))− δ(r̃2 − r̃1)

)
=
∫ t

0

∫ t

0

∑
`

δ(r1−R`)

(∑
m

δ(r2 −Rm)− δ(r1− r2)

)
dz1 dz2

=
∫ t

0

∫ t

0
ρ2(r1, r2) dz2 dz2

and

ρ2P (r̃12) = 1

A

∫
ρ2P (r̃1 + r̃′, r̃2 + r̃′) dr̃′ = t

V

∫ ∫ t

0

∫ t

0
ρ2(r1 + r̃′, r2 + r̃′) dz1 dz2 dr̃′.

The integrals overz1 andz2 can be rearranged by changing the variables of integration to
z′′ = z1 andz12 = z2 − z1, in the following manner:∫ t

0

∫ t

0
. . . dz1 dz2 =

∫ 0

−t

∫ t

−z12

. . . dz′′ dz12 +
∫ t

0

∫ t−z12

0
. . . dz′′ dz12.

Using dr̃′′ = dr̃′ + dr̃1, the expression forρ2P (r̃12) becomes

ρ2P (r̃12) = t
∫ 0

−t

(
1

V

∫ ∫ t

−z12

ρ2(r′′, r12 + r′′) dz′′ dr̃′′
)

dz12

+t
∫ t

0

(
1

V

∫ ∫ t−z12

0
ρ2(r′′, r12 + r′′) dz′′ dr̃′′

)
dz12. (9)

The bracketed expression in equation (9) is equal toρ2thin(r12), the average over arbitrary
origins ofρ2(r′′, r12 + r′′) for the 3D structure from which the 2D projection is derived. This
is becauseρ2(r′′, r12 + r′′) is zero outside the limits of the integral forz′′, which can thus be
extended to include all arbitrary origins.

However, studies of amorphous structures are usually concerned with 3D structures with
effectively infinite thickness. This is because the pair distribution functions are measured using
diffraction on samples with dimensions typically 106 greater than interatomic distances, or they
are calculated from models which have periodic boundary conditions. Hence it is most useful
to reformulate the integral in equation (9) in terms of a bulk 3D structure, i.e. withρ2bulk(r12).
To do this, it is necessary to explicitly represent the effects of finite thickness. From the limits
of integration in equation (9), it can be seen that the appropriate factor is (1− |z12|/t). Hence

ρ2P (r̃12) = t
∫ t

−t

(
1− |z12|

t

)
ρ2bulk(r12) dz12.

The accuracy of this reformulation depends on the following approximations, which are
reasonable for a homogenous, amorphous structure:∫ a

0
ρ2(r′′, r12 + r′′) dz′′ =

∫ a+b

b

ρ2(r′′, r12 + r′′) dz′′

and ∫ a

0
ρ2(r′′, r12 + r′′) dz′′ = a

b

∫ b

0
ρ2(r′′, r12 + r′′) dz′′.
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Then the relationship between the PDFs is

gP (r̃12) = 1

t

∫ t

−t

(
1− |z12|

t

)
g(r12) dz12

where at−2 factor comes from the difference betweenρ2
0 andρ2

0P . The relationship between
the isotropic PDFs,

gP (r̃12) = 1

t

∫ t

−t

(
1− |z12|

t

)
g((r̃2

12 + z2
12)

0.5) dz12 (10)

depends ont and the projected interatomic distancer̃12.

2.4. Triplet distribution functions for 2D projections

The relationships between the three particle density functions are

ρ3P (r̃1, r̃2, r̃3) =
∑
`

δ(r̃1− (X, Y )`)
(∑

m

δ(r̃2 − (X, Y )m)− δ(r̃1− r̃2)

)
×
(∑

n

δ(r̃3− (X, Y )n)− δ(r̃3− r̃1)− δ(r̃3− r̃2)

)
=
∫ t

0

∫ t

0

∫ t

0

∑
`

δ(r1−R`)

(∑
m

δ(r2 −Rm)− δ(r1− r2)

)
×
(∑

n

δ(r3−Rn)− δ(r3− r1)− δ(r3− r2)

)
dz1 dz2 dz3

=
∫ t

0

∫ t

0

∫ t

0
ρ3(r1, r2, r3) dz1 dz2 dz3

and

ρ3P (r̃12, r̃13) = 1

A

∫
ρ3P (r̃1 + r̃′, r̃2 + r̃′, r̃3 + r̃′) dr̃′

= t

V

∫ ∫ t

0

∫ t

0

∫ t

0
ρ3(r1 + r̃′, r2 + r̃′, r3 + r̃′) dz1 dz2 dz3 dr̃′.

The integrals overz1, z2 andz3 can be rearranged by changing the variables of integration to
z′′ = z1, z12 = z2 − z1 andz13 = z3− z1, in the following manner:

t

V

∫ t

0

∫ t

0

∫ t

0
. . . dz1 dz2 dz3 = t

∫ 0

−t

∫ z13

−t

(
1

V

∫ t

−z12

. . . dz′′
)

dz12 dz13

+t
∫ t

0

∫ t

z13

(
1

V

∫ t−z12

0
. . . dz′′

)
dz12 dz13

+t
∫ 0

−t

∫ t+z13

0

(
1

V

∫ t−z12

−z13

. . . dz′′
)

dz12 dz13

+t
∫ t

0

∫ 0

z13−t

(
1

V

∫ t−z13

−z12

. . . dz′′
)

dz12 dz13

+t
∫ 0

−t

∫ z12

−t

(
1

V

∫ t

−z13

. . . dz′′
)

dz13 dz12

+t
∫ t

0

∫ t

z12

(
1

V

∫ t−z13

0
. . . dz′′

)
dz13 dz12. (11)
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The central integral in equation (11) is equal toρ3thin(r12, r13), the average over arbitrary
origins of ρ3(r1 + r′′, r2 + r′′, r3 + r′′) for the 3D structure from which the 2D projection
is derived (using dr′′ = dz′′ dr̃′′, where d̃r′′ = dr̃′ + dr̃1). This is becauseρ3(r1 + r′′, r2

+r′′, r3 + r′′) is zero outside the limits of the integral forz′′, which can thus be extended to
include all arbitrary origins.

However, studies of amorphous structures are usually concerned with 3D structures with
effectively infinite thickness, as discussed in the previous section. Hence it is most useful
to reformulate the integral in equation (11) in terms of a bulk 3D structure, i.e. with the
functionρ3bulk(r12, r13). To do this, it is necessary to explicitly represent the effects of finite
thickness. This involves equivalent assumptions to those used in the previous section (which
are reasonable for homogeneous, amorphous structures), but the resulting expression,

ρ3P (r̃12, r̃13) = t
∫ 0

−t

∫ 0

−t

(
1 +

z12

t

)(
1 +

z13

t

)
ρ3bulk(r12, r13) dz12 dz13

+t
∫ t

0

∫ t

0

(
1− z12

t

)(
1− z13

t

)
ρ3bulk(r12, r13) dz12 dz13

+t
∫ 0

−t

∫ t−z13

0

(
1 +

(z13− z12)

t

)
ρ3bulk(r12, r13) dz12 dz13

+t
∫ t

0

∫ 0

z13−t

(
1− (z13− z12)

t

)
ρ3bulk(r12, r13) dz12 dz13

is more complex. In particular, the integral overz12 andz13 is restricted, due to the requirement
that−t 6 (z13 − z12) 6 t . For clarity, we represent the integral in schematic form in the
following. Then the relationship between the TDFs is

g3p(r̃12, r̃13) ≈ 1

t2

∫ t

−t

∫ t

−t

(
1± z12

t

)(
1± z13

t

)
g3(r12, r13) dz12 dz13

where at−3 factor comes from the difference betweenρ3
0 andρ3

0P . The relationship between
the isotropic TDFs,

g3P (r̃12, r̃13, φ23)

≈
∫ t

−t

∫ t

−t

(
1± z12

t

)(
1± z13

t

)
g3((r̃

2
12 + z2

12)
0.5, (r̃2

13 + z2
13)

0.5, θ23) dz12 dz13

(12)

depends ont , the projected interatomic distancesr̃12 andr̃13 and the projected angle between
them,φ23, where

cos(θ23) = r̃12r̃13 cos(φ23) + z12z13

(r̃2
12 + z2

12)
0.5(r̃2

13 + z2
13)

0.5

(using the cosine rule). Figure 1 illustrates the relationship between the dependent variables
in the 3D structure and the 2D projection.

2.5. Analytical expressions for the pair distribution functions of 2D projections

We can use the results obtained above to derive the 2D projection PDF,gP (r̃12), expected for
particular forms of the isotropic 3D structure PDF,g(r12). Amorphous structures have no long
range order, and

g(r12) = 1
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Figure 1. Variables used to describe the positions of triplets of atoms (1, 2 and 3) in a 3D structure
and particles (1′, 2′ and 3′) in the corresponding 2D projection.

for larger12. Inserting this into equation (10) gives

gP (r̃12) = 2

t

∫ t

0

(
1− z12

t

)
dz12 = 2

t

[
z12− z

2
12

2t

]t
0

= 1

i.e. the projection also has no long range order, as expected. This result is independent oft

because the value of the integral overz12 increases witht , and exactly balances thet−1 factor in
front of the integral. Amorphous structures also have non-overlapping atoms, i.e.g(r12) = 0
for r < R1, whereR1 is the nearest neighbour distance. Taking

g(r12) = 0 for r12 < R1 andg(r12) = 1 for r12 > R1

i.e. a step function inr12, is equivalent to carrying out the previous integral with the condition
(r̃2

12 + z2
12)

0.5 > R1 or zmin = (R12 − r̃2
12)

0.5, which gives

gP (r̃12) = 2

t

[
z12− z

2
12

2t

]t
zmin

= 1− 2

t

(
zmin − z

2
min

2t

)
=
(

1− zmin
t

)2

= (1− (R12 − r̃2
12)

0.5)2

for r̃12 < R1, and equal to 1 for̃r > R1. Finally, the short range order in amorphous structures
includes a nearest neighbour peak ofN1 atoms at a distance ofR1. A simple approximation
for this is

g(r12) = N1

4πR12ρ0
δ(r12− R1). (13)

Because of the delta function inr12, it is helpful to change the variable of integration fromz12

to r12 = (r̃2
12 + z2

12)
0.5, which gives

gP (r̃12) = 2

t

∫ t

0

(
1− z12

t

)
g(r12)

r12

(r2
12− r̃2

12)
0.5

dr12

=
(

1− (R12 − r̃2
12)

0.5

t

)
N1

2πR12ρ0P

R1

(R12 − r̃2
12)

0.5

for r̃12 6 R1, and equal to 0 for̃r > R1. The first factor takes account of finite thickness of
the 3D structure, and the remaining factors are equal to the projection of the spherical shell
described by equation (13).
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Using the above components, we have constructed a form ofg(r12) which approximates
that for tetrahedral amorphous carbon. It has a sharp nearest neighbour peak atR1 = 1.5 Å
with N1 = 4, a broad second nearest neighbour peak from 2.3 to 2.7 Å, and no ordering at
larger distances. This is shown in figure 2, along with the corresponding form ofgP (r̃12) for
thicknesst = 20 Å. We have not attempted an analogous procedure with the TDFs, because
of the greater complexity of those functions.

Figure 2. Approximation tog(r) (lower lines) and corresponding analytic form ofgP (r̃)
(upper lines) for ta-C witht = 20 Å.

3. Results from calculations

3.1. 3D structure models used

In the previous section, we showed that the order in a 2D projection is a function of the
order in the corresponding 3D structure. To verify the relationships derived, we have carried
out calculations of distribution functions for actual 3D structures and their corresponding 2D
projections. The 3D structures we have used are atomic models of tetrahedral amorphous
carbon, ta-C. These models were made available to us by K W R Gilkes who developed
them by adapting earlier models of amorphous silicon [20–22]. For our purposes, we
simply require structures which are representative of amorphous solids, i.e. they have well
defined short range order and no long range order. Whether or not these models are
entirely accurate representations of the structure of ta-C is not relevant. However, we note
that work on HREM of thin amorphous structures often involves samples of amorphous
Si or Ge, and it is reasonable to consider that ta-C belongs to the same general class of
materials.

We have used three different models of ta-C which all have cubic periodic boundary
conditions with atomic densityρ0 = 0.17 atoms Å−3. The three models have box lengths
L = 10.6 Å, L = 18.05 Å andL = 43.3 Å, and numbers of atomsN = 216,N = 1000 and
N = 13 810 (respectively). For simplicity, 2D projections were obtained from the models in
the directions of thex, y andz axes, corresponding to coordinates (Yi, Zi), (Zi,Xi) and (Xi, Yi)
respectively. These projections havet = L, and have square periodic boundary conditions with
box lengthL. (Note that smaller thicknesses and/or different orientations could be obtained
by choosing appropriate subsets of the model coordinates.)
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3.2. Direct calculations of 3D structure distribution functions

The pair distribution functions (PDFs) for the 3D structures have been obtained by direct
calculation from the coordinates of the 3D models using equations (1)–(3). Calculations of
the 3D structure distribution functions are non-redundant for interatomic distances less than
L/2. The 3D structure PDFs,g(r12), are shown in figures 3 and 4 for the models of ta-C with
L = 18.05 andL = 43.3 Å, with distance intervals of 0.06 Å. The triplet distribution functions
(TDFs) for the 3D structures have been obtained by direct calculation from the coordinates of
the 3D models using equations (4)–(6). The 3D structure TDFs,g3(r12, r23, θ23), are shown
in figures 5 and 6 for the models of ta-C withL = 10.6 andL = 18.05 Å, with distance
intervals of 0.2 Å and angle intervals of 10◦. The TDF was not calculated for the model with
L = 43.3 Å because it would require too much computing time.

Figure 3. Direct calculation ofg(r) (lower line) andgP (r̃) (upper line), and numerical integration
calculation ofgP (r̃) (circles) for model of ta-C withN = 1000 andt = 18.05 Å.

Figure 4. Direct calculation ofg(r) (lower line) andgP (r̃) (upper line), and numerical integration
calculation ofgP (r̃) (circles) for model of ta-C withN = 13 810 andt = 43.3 Å.

The functiong3(r12, r23, θ23) depends on three variables and hence a single figure can
only show a limited range of the values of the function. The method we have chosen is a
contour plot with the height of contours representing the values of the function (see table 1).
The variabler12 is fixed equal to 1.6 Å, corresponding to arrangements of triplets of atoms
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Figure 5. Direct calculation ofg3(r12, r23, θ23) (left) andg3P (r̃12, r̃23, φ23) (right) for a model of
ta-C withN = 216 andt = 10.6 Å, for values ofr12 = 1.6 Å and r̃12 = 1.6 Å. The dependent
variables are shown in rectangular coordinates. The values of contours are given in table 1.

Table 1. Values of contours in plots of triplet distribution functions.

Dashed
Figure Model Dotted lines line Solid lines

5 (left) t = 10.6 Å, 3D structure 0.1, 0.5 1.0 1.5, 2.5, 5, 10, 20
6 (left) t = 18.1 Å, 3D structure 0.1, 0.5 1.0 1.5, 2.5, 5, 10, 20
5 (right) t = 10.6 Å, 2D projection 0, 0.2, . . . ,0.8 1.0 1.2, 1.4, . . . ,3.0
6 (right) t = 18.1 Å, 2D projection 0.75, 0.80, . . . ,0.95 1.0 1.05, 1.10, . . . ,1.50

containing nearest neighbour atoms. The plane of plotting represents the dependent variables
r13 andθ23, shown in rectangular coordinates, which describe the position of particle 3 relative
to particles 1 and 2 (see figure 1). Particle 1 is located at the origin and particle 2 is located on
the positive vertical axis at distancer12 from the origin. (Similar comments apply to the plots
of the 2D projection TDFs.)

Because TDFs are not commonly reported functions we will briefly discuss their
interpretation. The 3D structure TDF,g3(r12, r23, θ23), shows the frequency of different
arrangements of triplets of atoms. In a ta-C structure, the most common arrangement of
triplets of atoms will be three carbon atoms forming a tetrahedral bond, i.e.r12 andr13 equal to
approximately 1.54 Å, andθ23 equal to approximately 109◦. Figures 5 and 6 show the results
for g3(r12, r23, θ23) with r12 = 1.6 Å, and as expected there is a peak atr13 = 1.6 Å and
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Figure 6. Direct calculation ofg3(r12, r23, θ23) (left) andg3P (r̃12, r̃23, φ23) (right) for a model of
ta-C withN = 1000 andt = 18.05 Å, for values ofr12 = 1.6 Å andr̃12 = 1.6 Å. The dependent
variables are shown in rectangular coordinates. The values of contours are given in table 1.

θ23 = 110◦. The same arrangement of atoms, but with the labels of atoms 1 and 2 exchanged,
also gives a peak atr13 = 2.5 Å andθ23 = 35◦, also seen in figures 5 and 6. TDFs are of
significant interest for improving our ability to describe and understand amorphous structures
[15]. We will discuss them further in a future paper.

3.3. Direct calculation of 2D projection distribution functions

The PDFs and TDFs for 2D projections have been obtained by direct calculation from the
coordinates of the projection using the 2D equivalents of the equations used for the 3D structure,
e.g. equations (7) and (8). Calculations of the 2D projection distribution functions are non-
redundant for interatomic distances less thanL/2. The 2D projection PDFs,gP (r̃12), are
shown in figures 3 and 4 for the models of ta-C withL = 18.05 andL = 43.3 Å, with distance
intervals of 0.06 Å. The results presented are the averages for the three different projections
perpendicular to thex, y and z axes. Figures 3 and 4 also show the estimates ofgP (r̃12)

obtained by numerical integration of equation (10) using the values ofg(r12).
The 2D projection TDFs,g3P (r̃12, r̃23, φ23), are shown in figures 5 and 6 for the models

of ta-C withL = 10.6 andL = 18.05 Å, with distance intervals of 0.2 Å and angle intervals
of 10◦. The results obtained are the averages for the three different projections perpendicular
to thex, y andz axes. (The format of the plots is described in the previous section.)
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4. Discussion

4.1. Order in projections

We have shown that the pair distribution function (PDF) of a 2D projection,gP (r̃12), is
a function of the PDF of the corresponding 3D structure,g(r12), and similarly for the
triplet distribution functions (TDFs),g3P (r̃12, r̃23, φ23) and g3(r12, r23, θ23) (respectively).
Inspection of the relationships in equations (10) and (12) reveals the following characteristics:

(i) Order occurs in a 2D projection because applying an integral over dz to an isotropic
structure gives higher weighting to interatomic vectors which are nearly perpendicular to
the direction of projection, so that their projected vectors will be similar.

(ii) A feature localized atr12 = R1 in g(r12) gives a contribution ingP (r̃12) at values of
r̃12 6 R1. Similarly, a feature localized atr12 = R1, r13 = R1′ and θ23 = 21 in
g3(r12, r23, θ23) gives a contribution ing3P (r̃12, r̃23, φ23) at values of̃r12 6 R1, r̃13 6 R1′

andφ23 6 21.
(iii) If the 3D structure PDF can be written as a sum of several different components (e.g. first

and second nearest neighbour peaks), then the 2D projection PDF will be equal to the sum
of the contributions from the different components. This characteristic is quite clear in
figure 2. The same is true for TDFs. In this respect, the relationship between 3D structure
and 2D projection distribution functions is ‘linear’.

(iv) The effect of increasing thickness is to diminish the degree of order in the 2D projection,
due to factors oft−1 in equation (10) andt−2 in equation (12), for the 2D projection PDF
and TDF respectively.

These characteristics can be seen in the directly calculated results forgP (r̃12) which are
shown in figures 3 and 4. There are small peaks corresponding to the first and second nearest
neighbour distances at approximately 1.5 and 2.5 Å respectively. Comparison of figures 3
and 4, for 2D projections witht = 18.05 andt = 43.3 Å respectively, confirms that the size
of features is proportional tot−1. Furthermore, there is good agreement between thegP (r̃12)

calculated directly, and those estimated by numerical integration ofg(r12) using equation (10).
The qualitative correspondence between features ing3P (r̃12, r̃23, φ23) and those in

g3(r12, r23, θ23) is apparent in figures 5 and 6. In particular, there are clearly small peaks
in g3P (r̃12, r̃23, φ23) at r̃12 = 1.5 Å andφ23 = 110◦, and atr̃13 = 2.5 Å andφ23 = 35◦, which
correspond to triplets of carbon atoms forming tetrahedral bonds. Comparison of figures 5 and
6, for 2D projections witht = 10.6 andt = 18.05 Å respectively, confirms that the strength
of features decreases ast increases. From inspection of the figures, the average ratio of the
peak heights is approximately 3:1 which is consistent with at−2 dependence.

4.2. Signal to noise

The results from the theory section make particular predictions about the effect oft on the
degree of order in the 2D projections. To better understand the effects of thickness, we can
consider the PDF as the sum of a random component, equal to 1, and the remainder,g(r12)−1.
As discussed previously, the random component is independent of thickness. The value of
g(r12) − 1 is only significantly different from zero for small values ofr12 and hencez12.
Because of this, the value of the integral over dz12 in equation (10) does not increase with
t , and thet−1 factor in front of the integral determines thet dependence. Similar comments
apply to the TDF, except that there is at−2 factor due to the double integral.

While the signal can be taken to be the degree of order in the 2D projection, it is also impor-
tant to consider the noise. If we regard the ta-C models as complete structures in themselves,
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then the results presented are ‘exact’ because they were calculated directly from the model
coordinates. However, if we regard the ta-C models as subsets of (hypothetical) infinite 3D
structures, then the results have statistical uncertainties due to sampling over a limited volume
and henceN . For a 2D projection withN particles each withN1 nearest neighbour particles,
the counting noise will be(NN1)0.5 for the PDF, and(N × N1(N1− 1)/2)0.5 for the TDF.
Furthermore, the value ofN increases ast . Hence, we estimate that the signal to noise ratio in
the 2D projection, denoted ‘S/N’, has at dependence oft0 for the PDF andt−0.5 for the TDF.

However, the effect of noise which increases witht can be reduced by increasing the area
of the 2D projection and henceN . Because our models are cubic, the area increases ast2, and
N increases ast3. Hence we estimate that the S/N for our results has at dependence oft1 for
the PDF andt0.5 for the TDF. These results may seem surprising, but inspection of figures 3,
4, 5 and 6 reveals that the S/N does not decrease even though the thickness increases by a
factor of 2. Note that our discussion here is concerned with ideal 2D projections, and not with
any possible experimental observations. Another factor to consider is that the TDF is a much
sharper function than the PDF [15], and this may partly offset the less favourablet dependence.

4.3. Unusual features in the 2D projection distribution functions

Figures 3 and 4 show thegP (r̃12) calculated directly, along with those estimated by numerical
integration ofg(r12). While there is good agreement overall, the agreement is not completely
within the level of noise. We consider one reason for this to be because the direct calculation
was only for projections in directions parallel to thex, y andz axes, whereas the numerical
integration was based on the isotropicg(r12). These will only be the same if the structure is
entirely isotropic, and the small amount of disagreement indicates to us that this is not the
case. In fact, for the model witht = 43.3 Å, there is a very large discrepancy in the form of
a peak for values of̃r12 tending to zero. This does not occur in the numerical integration, and
cannot because there is no feature ing(r12) for values ofr12 tending to zero. As the starting
configuration of this model was an FCC structure [20], we consider it feasible that the artefact
in the 2D projection PDF represents anisotropy in the model in the directions parallel to the
x, y andz axes due to a remnant of the initial FCC structure. Note that there appears to be a
similar artefact for thet = 18.05 Å model, and it also had an FCC starting configuration [21].

Figures 5 and 6 show the results for TDFs. There is a peak ing3P (r̃12, r̃23, φ23) at r̃13 =
1.4 Å andφ23 = 55◦ which has no counterpart ing3(r12, r23, θ23). Indeed, it cannot because
the 3D structure does not contain bond angles of 55◦. This feature is an artefact of the kind
which can arise in the higher order distribution functions of 2D projections. Its specific origin
is indicated in figure 7. When a triplet of carbon atoms forming a tetrahedral bond is projected
so that the second nearest neighbour atoms appear to be separated by the nearest neighbour
distance, the central atom will be projected to an intermediate position. The angular average
of possible orientations gives rise to the peak observed. This serves to reiterate the role which
angular averaging plays in ‘transmitting’ order from the 3D structure to the 2D projection.

4.4. Distribution functions with more dependent variables

The results presented here have dealt only with isotropic distribution functions. These are
simpler to calculate because they have fewer dependent variables. They are also appropriate
for large models of bulk amorphous structures which are expected to be isotropic. However,
we have seen that even a model withL = 43.3 Å shows signs of anisotropy. While this may be
an attribute of the particular model, the question as to whether amorphous solids in general are
isotropic on small length scales is a subject of considerable interest (see e.g. [14]). Indeed, if
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Figure 7. Origin of the artefact appearing in 2D projection TDFg3P (r̃12, r̃23, φ23) for models of
ta-C, for values of̃r12 = 1.6 Å.

there is small scale isotropy in thin amorphous structures, we consider it likely to be apparent
in their projections. Hence it is of interest to consider the anisotropic distribution functions,
i.e. without radial averaging. These have the same relationships as those for the isotropic
distribution functions (see equations (10) and (12)).

This work has considered only monatomic structures. For 3D structures with more than
one kind of atom, the use of partial distribution functions is well established. These distinguish
the correlations according to the type of atom involved [16]. All of the results presented here
are capable of extension in this way.

From the equations presented for PDFs and TDFs, it is seen to be a straightforward matter
to derive results for higher order correlation functions, e.g. ann-tuplet distribution function.
While this may not be practical due to the complexity of the dependent variables (which have
3n − 6 dimensions for isotropicn-tuplets), it is important for understanding the order in 2D
projections of amorphous 3D structures. A 2D projection contains information about all higher
order correlations because it preserves local information about the 3D structure, i.e. (Xi, Yi),
but the information is diminished by factorst1−n. This can be compared with diffraction which
only gives information about PDFs.

4.5. The relationship between 2D projections and diffraction

We have discussed the relationship between 2D projections and 3D structures in terms of
distribution functions. We now consider the relationship in terms of the techniques which can
be used to obtain information about these functions. The use of diffraction to measure the
PDF of amorphous 3D structures is a well established technique. In favourable circumstances
the isotropic PDF can be measured with a resolution of 0.02 Å. It is instructive to make a
comparison with the information about the PDF which underlies HREM.

In a diffraction experiment, the scattering of incident radiation is measured as a function
of the scattering vectorq = 1k, wherek is the wavevector. The relative phase shift of
scattering from pointr in the 3D structure is exp(iq · r). In the first Born approximation [23],
the amplitude of scattering is

A(q) = f (q)FT−1
3d {ρ(r)}
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wheref (q) describes the scattering from an atom due to the atomic potential, and FT denotes
the Fourier transform operation. Thus the scattering amplitude is a function ofρ(r) which
contains all structural information. However, the quantity measured is the scattering intensity,

I (q) = |f (q)|2FT−1
3d {N(ρ0g(r12) + δ(r12))}

which only contains information about the PDF (because squaring the amplitudes is equivalent
to taking the autocorrelation ofρ(r)) [16]. For an isotropic 3D structure the 3D inverse Fourier
transform becomes a 1D integral,

1

2π2

∫ (
I (q)

|f (q)|2
)

sin(qr)q2 dq = N(ρ0g(r12) + δ(r12)). (14)

In the case of electron diffraction in a transmission electron microscope, the scattering is
measured in thẽq plane, wherẽq is the 2D vector (qx, qy). By a standard theorem, the value
of the Fourier transform in a plane through the origin is equal to the Fourier transform of the
projection in the direction perpendicular to the plane [24]. Hence, the scattering amplitude in
the q̃ plane,

A(q̃) = f (q̃)FT−1
2d

{∫
ρ(r) dz

}
depends only on the projected particle density function. If the 3D structure is not isotropic,
the information about the 2D projection PDF is obtained from the scattering intensity,

I (q̃) = |f (q̃)|2FT−1
2d {N(ρ0P gP (r̃12) + δ(r̃12))}.

For an isotropic 3D structure the 2D inverse Fourier transform becomes a 1D integral,

1

2π

∫ (
I (q)

|f (q)|2
)
J0(qr)q dq = N(ρ0P gP (r̃12) + δ(r̃12)) (15)

whereJ0 is a Bessel function [25]. For an isotropic structureI (q) = I (q̃) = I (q), and the
structural information ing(r12) andgP (r̃12) is equivalent because both equations (14) and (15)
are functions ofI (q). Note also that whereas the relationship betweenI (q) andg(r12) is
independent oft becauseρ0 is independent oft , gP (r̃12) has at−1 dependence onI (q) due to
the factorρ0P in equation (15).

In the case of standard HREM, the scattering amplitude in the diffraction plane,A(q̃),
passes through an electron lens which focuses it into an image in the image plane [1]. An
additional phase shift occurs due to lens aberrations, described by the contrast transfer function
χ(q̃). Hence theq̃ dependence of the image amplitude is

A′(q̃) = δ(q̃)− i exp(iχ(q̃))f (q̃)FT−1
2d {ρP (r̃)} (16)

whereδ(q̃) is the unscattered beam. In the weak phase object approximation, the image
contrast is dominated by the interference of the left and right terms in equation (16), i.e. it is
linear in FT−1

2d {ρP (r̃)}. In the first approximation,χ(q̃) acts as a frequency filter with reverse
contrast. The important point is the preservation of the phase information inA′(q̃) (which does
not occur in diffraction) and thereby the information aboutρP (r̃), and hence the 2D projection
PDF, TDF and higher order correlations.

5. Conclusions

We have examined the order in 2D projections of 3D amorphous structures using distribution
functions, and have derived the relationships between the pair distribution functions (PDFs) of
the 3D structure and of the corresponding 2D projection. Analogous relationships have been
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obtained for the triplet distribution functions (TDFs). We have confirmed the relationships
in the case of isotropic distribution functions using calculations on models of an amorphous
solid (ta-C) with thicknesses,t , in the range from 10.6 to 43.3 Å. The 2D projection PDF and
TDF show small peaks corresponding to the peaks in the 3D structure PDF and TDF, such as
for nearest neighbours and tetrahedral bonding, respectively. The degree of order in the 2D
projection is diminished ast increases, with a dependence oft−1 for the PDF andt−2 for the
TDF. However, this effect can be offset by using larger areas of projection, and peaks in the
2D projection PDF were quite clear fort = 43.3 Å. Deviations in the 2D projection PDF from
that expected for an isotropic structure gives evidence of anisotropy in the models. The 2D
projection TDF shows a peak which does not correspond to those in the 3D structure TDF and
which represents an artefact that can occur in the higher order correlations of 2D projections.
The same approach can be extended to higher order correlation functions than the TDF. Thus
it has been demonstrated that 2D projections of 3D amorphous structures contain a great deal
of valuable structural information. From this point of view, the possibility of improvements
in electron microscopy techniques leading to sub-Å resolution HREM images of amorphous
materials is an exciting prospect.
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